Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.

Identifieur interne : 000024 ( Main/Exploration ); précédent : 000023; suivant : 000025

The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.

Auteurs : Cuiping Zhao [États-Unis] ; Zhe Lyu [États-Unis] ; Feng Long [États-Unis] ; Taiwo Akinyemi [États-Unis] ; Kasidet Manakongtreecheep [États-Unis] ; Dieter Söll [États-Unis] ; William B. Whitman [États-Unis] ; David J. Vinyard [États-Unis] ; Yuchen Liu [États-Unis]

Source :

RBID : pubmed:31709520

Descripteurs français

English descriptors

Abstract

The nucleotide binding protein 35 (Nbp35)/cytosolic Fe-S cluster deficient 1 (Cfd1)/alternative pyrimidine biosynthetic protein C (ApbC) protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe-S cluster assembly scaffold required for the maturation of Fe-S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe-S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal host Methanococcus maripaludis contains a [4Fe-4S] cluster that can be transferred to a [4Fe-4S] apoprotein. Deletion of mmp0704 from M. maripaludis does not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe-4S] cluster transfer protein in methanogenic archaea.

DOI: 10.1002/1873-3468.13673
PubMed: 31709520


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.</title>
<author>
<name sortKey="Zhao, Cuiping" sort="Zhao, Cuiping" uniqKey="Zhao C" first="Cuiping" last="Zhao">Cuiping Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lyu, Zhe" sort="Lyu, Zhe" uniqKey="Lyu Z" first="Zhe" last="Lyu">Zhe Lyu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Long, Feng" sort="Long, Feng" uniqKey="Long F" first="Feng" last="Long">Feng Long</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Akinyemi, Taiwo" sort="Akinyemi, Taiwo" uniqKey="Akinyemi T" first="Taiwo" last="Akinyemi">Taiwo Akinyemi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Manakongtreecheep, Kasidet" sort="Manakongtreecheep, Kasidet" uniqKey="Manakongtreecheep K" first="Kasidet" last="Manakongtreecheep">Kasidet Manakongtreecheep</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soll, Dieter" sort="Soll, Dieter" uniqKey="Soll D" first="Dieter" last="Söll">Dieter Söll</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Whitman, William B" sort="Whitman, William B" uniqKey="Whitman W" first="William B" last="Whitman">William B. Whitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vinyard, David J" sort="Vinyard, David J" uniqKey="Vinyard D" first="David J" last="Vinyard">David J. Vinyard</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yuchen" sort="Liu, Yuchen" uniqKey="Liu Y" first="Yuchen" last="Liu">Yuchen Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31709520</idno>
<idno type="pmid">31709520</idno>
<idno type="doi">10.1002/1873-3468.13673</idno>
<idno type="wicri:Area/Main/Corpus">000203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000203</idno>
<idno type="wicri:Area/Main/Curation">000203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000203</idno>
<idno type="wicri:Area/Main/Exploration">000203</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.</title>
<author>
<name sortKey="Zhao, Cuiping" sort="Zhao, Cuiping" uniqKey="Zhao C" first="Cuiping" last="Zhao">Cuiping Zhao</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lyu, Zhe" sort="Lyu, Zhe" uniqKey="Lyu Z" first="Zhe" last="Lyu">Zhe Lyu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Long, Feng" sort="Long, Feng" uniqKey="Long F" first="Feng" last="Long">Feng Long</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Akinyemi, Taiwo" sort="Akinyemi, Taiwo" uniqKey="Akinyemi T" first="Taiwo" last="Akinyemi">Taiwo Akinyemi</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Manakongtreecheep, Kasidet" sort="Manakongtreecheep, Kasidet" uniqKey="Manakongtreecheep K" first="Kasidet" last="Manakongtreecheep">Kasidet Manakongtreecheep</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Soll, Dieter" sort="Soll, Dieter" uniqKey="Soll D" first="Dieter" last="Söll">Dieter Söll</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry, Yale University, New Haven, CT, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry, Yale University, New Haven, CT</wicri:regionArea>
<placeName>
<region type="state">Connecticut</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Whitman, William B" sort="Whitman, William B" uniqKey="Whitman W" first="William B" last="Whitman">William B. Whitman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Georgia, Athens, GA</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Vinyard, David J" sort="Vinyard, David J" uniqKey="Vinyard D" first="David J" last="Vinyard">David J. Vinyard</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Yuchen" sort="Liu, Yuchen" uniqKey="Liu Y" first="Yuchen" last="Liu">Yuchen Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA</wicri:regionArea>
<placeName>
<region type="state">Louisiane</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">FEBS letters</title>
<idno type="eISSN">1873-3468</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Archaeal Proteins (genetics)</term>
<term>Archaeal Proteins (metabolism)</term>
<term>Cell Nucleus (metabolism)</term>
<term>Cytosol (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Methanococcus (genetics)</term>
<term>Methanococcus (growth & development)</term>
<term>Methanococcus (metabolism)</term>
<term>Phylogeny (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cytosol (métabolisme)</term>
<term>Délétion de gène (MeSH)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Methanococcus (croissance et développement)</term>
<term>Methanococcus (génétique)</term>
<term>Methanococcus (métabolisme)</term>
<term>Noyau de la cellule (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines d'archée (génétique)</term>
<term>Protéines d'archée (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Archaeal Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Archaeal Proteins</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Methanococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Methanococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Methanococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Methanococcus</term>
<term>Protéines d'archée</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Nucleus</term>
<term>Cytosol</term>
<term>Methanococcus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytosol</term>
<term>Ferrosulfoprotéines</term>
<term>Methanococcus</term>
<term>Noyau de la cellule</term>
<term>Protéines d'archée</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
<term>Phylogenèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The nucleotide binding protein 35 (Nbp35)/cytosolic Fe-S cluster deficient 1 (Cfd1)/alternative pyrimidine biosynthetic protein C (ApbC) protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe-S cluster assembly scaffold required for the maturation of Fe-S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe-S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal host Methanococcus maripaludis contains a [4Fe-4S] cluster that can be transferred to a [4Fe-4S] apoprotein. Deletion of mmp0704 from M. maripaludis does not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe-4S] cluster transfer protein in methanogenic archaea.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31709520</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>05</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1873-3468</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>594</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2020</Year>
<Month>03</Month>
</PubDate>
</JournalIssue>
<Title>FEBS letters</Title>
<ISOAbbreviation>FEBS Lett</ISOAbbreviation>
</Journal>
<ArticleTitle>The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.</ArticleTitle>
<Pagination>
<MedlinePgn>924-932</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/1873-3468.13673</ELocationID>
<Abstract>
<AbstractText>The nucleotide binding protein 35 (Nbp35)/cytosolic Fe-S cluster deficient 1 (Cfd1)/alternative pyrimidine biosynthetic protein C (ApbC) protein homologs have been identified in all three domains of life. In eukaryotes, the Nbp35/Cfd1 heterocomplex is an essential Fe-S cluster assembly scaffold required for the maturation of Fe-S proteins in the cytosol and nucleus, whereas the bacterial ApbC is an Fe-S cluster transfer protein only involved in the maturation of a specific target protein. Here, we show that the Nbp35/ApbC homolog MMP0704 purified from its native archaeal host Methanococcus maripaludis contains a [4Fe-4S] cluster that can be transferred to a [4Fe-4S] apoprotein. Deletion of mmp0704 from M. maripaludis does not cause growth deficiency under our tested conditions. Our data indicate that Nbp35/ApbC is a nonessential [4Fe-4S] cluster transfer protein in methanogenic archaea.</AbstractText>
<CopyrightInformation>© 2019 Federation of European Biochemical Societies.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Cuiping</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lyu</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Long</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akinyemi</LastName>
<ForeName>Taiwo</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Manakongtreecheep</LastName>
<ForeName>Kasidet</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Söll</LastName>
<ForeName>Dieter</ForeName>
<Initials>D</Initials>
<Identifier Source="ORCID">0000-0002-3077-8986</Identifier>
<AffiliationInfo>
<Affiliation>Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Yale University, New Haven, CT, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Whitman</LastName>
<ForeName>William B</ForeName>
<Initials>WB</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Georgia, Athens, GA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vinyard</LastName>
<ForeName>David J</ForeName>
<Initials>DJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Yuchen</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">0000-0003-0842-5882</Identifier>
<AffiliationInfo>
<Affiliation>Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>FEBS Lett</MedlineTA>
<NlmUniqueID>0155157</NlmUniqueID>
<ISSNLinking>0014-5793</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019843">Archaeal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019843" MajorTopicYN="N">Archaeal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017017" MajorTopicYN="N">Methanococcus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Methanococcus maripaludis </Keyword>
<Keyword MajorTopicYN="Y">ApbC</Keyword>
<Keyword MajorTopicYN="Y">Nbp35</Keyword>
<Keyword MajorTopicYN="Y">archaea</Keyword>
<Keyword MajorTopicYN="Y">iron-sulfur cluster</Keyword>
<Keyword MajorTopicYN="Y">methanogen</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>11</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31709520</ArticleId>
<ArticleId IdType="doi">10.1002/1873-3468.13673</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Johnson DC, Dean DR, Smith AD and Johnson MK (2005) Structure, function, and formation of biological iron-sulfur clusters. Annu Rev Biochem 74, 247-281.</Citation>
</Reference>
<Reference>
<Citation>Meyer J (2008) Iron-sulfur protein folds, iron-sulfur chemistry, and evolution. J Biol Inorg Chem 13, 157-170.</Citation>
</Reference>
<Reference>
<Citation>Pain D and Dancis A (2016) Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis. Curr Opin Genet Dev 38, 45-51.</Citation>
</Reference>
<Reference>
<Citation>Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460, 831-838.</Citation>
</Reference>
<Reference>
<Citation>Py B and Barras F (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8, 436-446.</Citation>
</Reference>
<Reference>
<Citation>Zheng L, White RH, Cash VL, Jack RF and Dean DR (1993) Cysteine desulfurase activity indicates a role for NifS in metallocluster biosynthesis. Proc Natl Acad Sci USA 90, 2754-2758.</Citation>
</Reference>
<Reference>
<Citation>Blanc B, Gerez C and Ollagnier de Choudens S (2015) Assembly of Fe/S proteins in bacterial systems: biochemistry of the bacterial ISC system. Biochim Biophys Acta 1853, 1436-1447.</Citation>
</Reference>
<Reference>
<Citation>Raulfs EC, O'Carroll IP, Dos Santos PC, Unciuleac MC and Dean DR (2008) In vivo iron-sulfur cluster formation. Proc Natl Acad Sci USA 105, 8591-8596.</Citation>
</Reference>
<Reference>
<Citation>Yuvaniyama P, Agar JN, Cash VL, Johnson MK and Dean DR (2000) NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc Natl Acad Sci USA 97, 599-604.</Citation>
</Reference>
<Reference>
<Citation>Outten FW (2015) Recent advances in the Suf Fe-S cluster biogenesis pathway: beyond the proteobacteria. Biochim Biophys Acta 1853, 1464-1469.</Citation>
</Reference>
<Reference>
<Citation>Roche B, Aussel L, Ezraty B, Mandin P, Py B and Barras F (2013) Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Biochim Biophys Acta 1827, 455-469.</Citation>
</Reference>
<Reference>
<Citation>Braymer JJ and Lill R (2017) Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem 292, 12754-12763.</Citation>
</Reference>
<Reference>
<Citation>Lu Y (2018) Assembly and transfer of iron-sulfur clusters in the plastid. Front Plant Sci 9, 336.</Citation>
</Reference>
<Reference>
<Citation>Netz DJ, Mascarenhas J, Stehling O, Pierik AJ and Lill R (2014) Maturation of cytosolic and nuclear iron-sulfur proteins. Trends Cell Biol 24, 303-312.</Citation>
</Reference>
<Reference>
<Citation>Grossman JD, Camire EJ and Perlstein DL (2018) Approaches to interrogate the role of nucleotide hydrolysis by metal trafficking NTPases: the Nbp35-Cfd1 iron-sulfur cluster scaffold as a case study. Methods Enzymol 599, 293-325.</Citation>
</Reference>
<Reference>
<Citation>Hausmann A, Aguilar Netz DJ, Balk J, Pierik AJ, Muhlenhoff U and Lill R (2005) The eukaryotic P loop NTPase Nbp35: an essential component of the cytosolic and nuclear iron-sulfur protein assembly machinery. Proc Natl Acad Sci USA 102, 3266-3271.</Citation>
</Reference>
<Reference>
<Citation>Netz DJ, Pierik AJ, Stumpfig M, Muhlenhoff U and Lill R (2007) The Cfd1-Nbp35 complex acts as a scaffold for iron-sulfur protein assembly in the yeast cytosol. Nat Chem Biol 3, 278-286.</Citation>
</Reference>
<Reference>
<Citation>Stehling O, Netz DJ, Niggemeyer B, Rösser R, Eisenstein RS, Puccio H, Pierik AJ and Lill R (2008) Human Nbp35 is essential for both cytosolic iron-sulfur protein assembly and iron homeostasis. Mol Cell Biol 28, 5517-5528.</Citation>
</Reference>
<Reference>
<Citation>Netz DJ, Pierik AJ, Stumpfig M, Bill E, Sharma AK, Pallesen LJ, Walden WE and Lill R (2012) A bridging [4Fe-4S] cluster and nucleotide binding are essential for function of the Cfd1-Nbp35 complex as a scaffold in iron-sulfur protein maturation. J Biol Chem 287, 12365-12378.</Citation>
</Reference>
<Reference>
<Citation>Pallesen LJ, Solodovnikova N, Sharma AK and Walden WE (2013) Interaction with Cfd1 increases the kinetic lability of FeS on the Nbp35 scaffold. J Biol Chem 288, 23358-23367.</Citation>
</Reference>
<Reference>
<Citation>Camire EJ, Grossman JD, Thole GJ, Fleischman NM and Perlstein DL (2015) The yeast Nbp35-Cfd1 cytosolic iron-sulfur cluster scaffold is an ATPase. J Biol Chem 290, 23793-23802.</Citation>
</Reference>
<Reference>
<Citation>Grossman JD, Gay KA, Camire EJ, Walden WE and Perlstein DL (2019) Coupling nucleotide binding and hydrolysis to iron-sulfur cluster acquisition and transfer revealed through genetic dissection of the Nbp35 ATPase site. Biochemistry 58, 2017-2027.</Citation>
</Reference>
<Reference>
<Citation>Boyd JM, Pierik AJ, Netz DJ, Lill R and Downs DM (2008) Bacterial ApbC can bind and effectively transfer iron-sulfur clusters. Biochemistry 47, 8195-8202.</Citation>
</Reference>
<Reference>
<Citation>Boyd JM, Sondelski JL and Downs DM (2009) Bacterial ApbC protein has two biochemical activities that are required for in vivo function. J Biol Chem 284, 110-8.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Sieprawska-Lupa M, Whitman WB and White RH (2010) Cysteine is not the sulfur source for iron-sulfur cluster and methionine biosynthesis in the methanogenic archaeon Methanococcus maripaludis. J Biol Chem 285, 31923-31929.</Citation>
</Reference>
<Reference>
<Citation>Boyd JM, Drevland RM, Downs DM and Graham DE (2009) Archaeal ApbC/Nbp35 homologs function as iron-sulfur cluster carrier proteins. J Bacteriol 191, 1490-1497.</Citation>
</Reference>
<Reference>
<Citation>Whitman WB, Shieh J, Sohn S, Caras DS and Premachandran U (1986) Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7, 235-240.</Citation>
</Reference>
<Reference>
<Citation>Walters AD, Smith SE and Chong JP (2011) Shuttle vector system for Methanococcus maripaludis with improved transformation efficiency. Appl Environ Microbiol 77, 2549-2551.</Citation>
</Reference>
<Reference>
<Citation>Sarmiento F, Leigh JA and Whitman WB (2011) Genetic systems for hydrogenotrophic methanogens. Methods Enzymol 494, 43-73.</Citation>
</Reference>
<Reference>
<Citation>Lyu Z, Chou C-w, Shi H, Patel R, Duin EC and Whitman WB (2017) Mmp10 is required for post-translational methylation of arginine at the active site of methyl-coenzyme M reductase. bioRxiv, 211441. “[PREPRINT]”</Citation>
</Reference>
<Reference>
<Citation>Stoll S and Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178, 42-55.</Citation>
</Reference>
<Reference>
<Citation>Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H and Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12, 291-299.</Citation>
</Reference>
<Reference>
<Citation>Liu Y, Vinyard DJ, Reesbeck ME, Suzuki T, Manakongtreecheep K, Holland PL, Brudvig GW and Söll D (2016) A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci USA 113, 12703-12708.</Citation>
</Reference>
<Reference>
<Citation>Gardner P and Fridovich I (1992) Inactivation-reactivation of aconitase in Escherichia coli: a sensitive measure of superoxide radical. J Biol Chem 267, 8757-8763.</Citation>
</Reference>
<Reference>
<Citation>Kumar S, Stecher G, Li M, Knyaz C and Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35, 1547-1549.</Citation>
</Reference>
<Reference>
<Citation>Le SQ and Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25, 1307-1320.</Citation>
</Reference>
<Reference>
<Citation>Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution Int J Org Evolution 39, 783-791.</Citation>
</Reference>
<Reference>
<Citation>Liu J, Chakraborty S, Hosseinzadeh P, Yu Y, Tian S, Petrik I, Bhagi A and Lu Y (2014) Metalloproteins containing cytochrome, iron-sulfur, or copper redox centers. Chem Rev 114, 4366-4469.</Citation>
</Reference>
<Reference>
<Citation>Weil JA and Bolton JR (2007) Basic principles of paramagnetic resonance. In Electron Paramagnetic Resonance: Elementary Theory and Practical Applications (Weil JA and Bolton JR, eds), pp. 1-35. John Wiley & Sons, Inc., Hoboken, NJ.</Citation>
</Reference>
<Reference>
<Citation>Sarmiento F, Mrázek J and Whitman WB (2013) Genome-scale analysis of gene function in the hydrogenotrophic methanogenic archaeon Methanococcus maripaludis. Proc Natl Acad Sci USA 110, 4726-4731.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Connecticut</li>
<li>Géorgie (États-Unis)</li>
<li>Louisiane</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Louisiane">
<name sortKey="Zhao, Cuiping" sort="Zhao, Cuiping" uniqKey="Zhao C" first="Cuiping" last="Zhao">Cuiping Zhao</name>
</region>
<name sortKey="Akinyemi, Taiwo" sort="Akinyemi, Taiwo" uniqKey="Akinyemi T" first="Taiwo" last="Akinyemi">Taiwo Akinyemi</name>
<name sortKey="Liu, Yuchen" sort="Liu, Yuchen" uniqKey="Liu Y" first="Yuchen" last="Liu">Yuchen Liu</name>
<name sortKey="Long, Feng" sort="Long, Feng" uniqKey="Long F" first="Feng" last="Long">Feng Long</name>
<name sortKey="Lyu, Zhe" sort="Lyu, Zhe" uniqKey="Lyu Z" first="Zhe" last="Lyu">Zhe Lyu</name>
<name sortKey="Manakongtreecheep, Kasidet" sort="Manakongtreecheep, Kasidet" uniqKey="Manakongtreecheep K" first="Kasidet" last="Manakongtreecheep">Kasidet Manakongtreecheep</name>
<name sortKey="Soll, Dieter" sort="Soll, Dieter" uniqKey="Soll D" first="Dieter" last="Söll">Dieter Söll</name>
<name sortKey="Soll, Dieter" sort="Soll, Dieter" uniqKey="Soll D" first="Dieter" last="Söll">Dieter Söll</name>
<name sortKey="Vinyard, David J" sort="Vinyard, David J" uniqKey="Vinyard D" first="David J" last="Vinyard">David J. Vinyard</name>
<name sortKey="Whitman, William B" sort="Whitman, William B" uniqKey="Whitman W" first="William B" last="Whitman">William B. Whitman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000024 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000024 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31709520
   |texte=   The Nbp35/ApbC homolog acts as a nonessential [4Fe-4S] transfer protein in methanogenic archaea.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31709520" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020